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Abstract
It is well known that integrable hierarchies in (1+1) dimensions are local while
the recursion operators that generate these hierarchies usually contain nonlocal
terms. We resolve this apparent discrepancy by providing simple and universal
sufficient conditions for a (nonlocal) recursion operator in (1+1) dimensions
to generate a hierarchy of local symmetries. These conditions are satisfied by
virtually all recursion operators known today and are much easier to verify
than those found in earlier work. We also give explicit formulae for the
nonlocal parts of higher recursion, Hamiltonian and symplectic operators of
integrable systems in (1+1) dimensions. Using these two results we prove,
under some natural assumptions, the Maltsev–Novikov conjecture stating that
higher Hamiltonian, symplectic and recursion operators of integrable systems
in (1+1) dimensions are weakly nonlocal, i.e., the coefficients of these operators
are local and these operators contain at most one integration operator in each
term.

PACS number: 02.30.Ik
Mathematics Subject Classification: 37K10, 35A30, 58G35, 35Q58

Introduction

It is common knowledge that an integrable system of PDEs never comes alone—it always
is a member of an infinite integrable hierarchy. In particular, if we deal with evolution
systems then the members of the hierarchy are symmetries for each other, and using
a recursion operator, which maps symmetries to symmetries, offers a natural way to
construct the whole infinite hierarchy from a single seed system, see e.g. [1–3] and
references therein and cf [2–7] and references therein for the hierarchies generated by master
symmetries.
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The overwhelming majority of recursion operators in (1+1) dimensions share two key
features [1–3, 8]: they are hereditary, i.e., their Nijenhuis torsion vanishes [9], and weakly
nonlocal [10], i.e., all their nonlocal terms have the form a ⊗ D−1 ◦ b, where a and b are local
functions, possibly vector valued, and D is the operator of the total x-derivative; see below for
details.

On the other hand, it is well known that nearly all integrable hierarchies in (1+1)
dimensions are local. Usually it is not difficult to check that applying the recursion operator
to a local seed symmetry once or twice yields local quantities, but the locality of the whole
infinite hierarchy is quite difficult to verify rigorously.

It is therefore natural to ask [11] whether a weakly nonlocal hereditary operator will
always produce a local hierarchy, as in earlier work [3, 11–16] one always had to require the
existence of some nontrivial additional structures (e.g., the scaling symmetry [11, 15, 16]
or bi-Hamiltonian structure [3, 12]) in order to get the proof of locality through. We
show that this is not necessary: theorem 1 states that if for a normal weakly nonlocal
hereditary recursion operator R the Lie derivative LQ(R) of R along a local symmetry Q
vanishes1 and R(Q) is local, then Rj (Q) are local for all j = 2, 3, . . . . Note that, unlike
e.g. [11, 16], we do not require the hierarchy in question to be time independent, and our
proposition 1 and theorem 1 can be successfully employed for proving locality of the so-called
variable coefficients hierarchies, including for instance those constructed in [17, 18] and [2],
cf example 2.

Given an operator R, it is usually immediate whether it is weakly nonlocal, but it
can be quite difficult to check whether it is hereditary, especially if we deal with newly
discovered integrable systems with no multi-Hamiltonian representation and no Lax pair
known. Amazingly enough, the existence of a scaling symmetry shared by R and Q enables
us to avoid the cumbersome direct verification of whether R is hereditary and allows us to prove
locality and commutativity of the corresponding hierarchy in a very simple and straightforward
manner, as shown in proposition 3 and corollary 3. This is in a sense reminiscent of the
construction of compatible Hamiltonian operators via infinitesimal deformations in Smirnov
[19] (see also [20] and references therein) and is quite different from the approach of
[11], where both R being hereditary and existence of scaling symmetry were required
ab initio.

Let R,P and S be respectively recursion, Hamiltonian and symplectic operator for some
(1+1)-dimensional integrable system, and let all of them be weakly nonlocal. Motivated
by the examples of nonlinear Schrödinger and KdV equations, Maltsev and Novikov [10]
conjectured that higher recursion operators Rk , higher Hamiltonian operators P ◦ R†k and
higher symplectic operators S ◦ Rk are weakly nonlocal for all k ∈ N as well.

Combining our corollary 2 with the results of Enriquez, Orlov and Rubtsov [21] enabled
us to prove this conjecture under some natural assumptions, the most important of which is
that R is hereditary, see theorem 2 for details. This has interesting and quite far-reaching
consequences for both theory and applications of integrable systems, e.g., in connection with
the so-called Whitham averaging, cf discussion in [10, 22, 23].

1. Preliminaries

Denote byAj the algebra of locally analytic functions of x, t, u, u1, . . . , uj under the standard
multiplication, and let A = ⋃∞

j=0 Aj . We shall refer to the elements of A as local functions

1 Where does the condition LQ(R) = 0 come from? As all members of an integrable hierarchy must be compatible,
the symmetries Ri (Q) must commute, and this is ensured by requiring that R be hereditary and that LQ(R) = 0, cf
e.g. [9]. Moreover, LQ(R) = 0 means that R is a recursion operator for the evolution system uτ = Q.
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[24–27]. Here uk = (
u1

k, . . . , u
s
k

)T
are s-component vectors, u0 ≡ u, and the superscript T

stands for the matrix transposition. The derivation [1, 25]

D ≡ Dx = ∂

∂x
+

∞∑
j=0

uj+1 · ∂

∂uj

makes A into a differential algebra. Informally, x plays the role of the space variable, and
D is the total x-derivative, cf e.g. [1, 25]. It is closely related to the operator of variational
derivative [1–3]

δ

δu
=

∞∑
j=0

(−D)j
∂

∂uj

.

In particular, see e.g. [1, 3], for any f ∈ A we have

δf

δu
= 0 if and only if f ∈ Im D. (1)

Here and below ‘·’ stands for the scalar product of two s-component vectors, and Im D denotes
the image of D in A, so f ∈ Im D means that f = D(g) for some g ∈ A.

For a (scalar, vector or matrix) local function f define [1] its order ord f as the greatest
integer k such that ∂f/∂uk �= 0 (if f = f (x, t), we set ord f = 0 by definition), and define
the directional derivative of f (cf e.g. [1, 9]) by the formula

f ′ =
∞∑
i=0

∂f

∂ui

Di.

Consider now the algebra Matq(A)[[D−1]] of formal series of the form H = ∑k
j=−∞ hjD

j ,
where hj are q × q matrices with entries from A. The multiplication law in this algebra is
given by the (extended by linearity) the generalized Leibniz rule [1, 24, 26, 27]:

aDi ◦ bDj = a

∞∑
q=0

i(i − 1) · · · (i − q + 1)

q!
Dq(b)Di+j−q . (2)

The commutator [A,B] = A ◦ B − B ◦ A further makes Matq(A)[[D−1]] into a Lie algebra.
Recall [1, 24, 26, 27] that the degree deg H of H = ∑p

j=−∞ hjD
j ∈ Matq(A)[[D−1]]

is the greatest integer m such that hm �= 0. For any H = ∑m
j=−∞ hjD

j ∈ Matq(A)[[D−1]]

define its differential part H+ = ∑m
j=0 hjD

j and nonlocal part H− = ∑−1
j=−∞ hjD

j so that
H− + H+ = H, and let H† = ∑m

j=−∞(−D)j ◦ hT
j stand for the formal adjoint of H, see e.g.

[1, 24, 26, 27].
We shall employ the notation Aq for the space of q-component functions with entries

from A, no matter whether they are interpreted as column or row vectors. Following [10], we
shall call H ∈ Matq(A)[[D−1]] weakly nonlocal if there exist �f α ∈ Aq, �gα ∈ Aq and k ∈ N

such that H− can be written in the form H− = ∑k
α=1

�f α ⊗ D−1 ◦ �gα . We shall further say
that H ∈ Matq(A)[[D−1]] is local (or purely differential) if H− = 0. Nearly all recursion
operators known today in (1+1) dimensions, as well as Hamiltonian and symplectic operators,
are weakly nonlocal, cf e.g. [8].

The space V of s-component columns with entries from A is made into a Lie algebra if
we set [P , Q] = Q′(P ) − P ′(Q), see e.g. [1, 2, 9, 24]. The Lie derivative of R ∈ V along
Q ∈ V is then given [1, 2, 3, 28] by LQ(R) = [Q, R]. The natural dual of V is the space
V∗ of s-component rows with entries from A. For γ ∈ V∗ we define [2, 3, 11, 28] its Lie
derivative along Q ∈ V as LQ(γ) = γ ′(Q) + Q′†(γ), see [3, 28] for more details and for the
related complex of formal calculus of variations.
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For Q ∈ V and γ ∈ V∗ we have, see e.g. [1], δ(Q · γ)/δu = Q′†(γ) + γ ′†(Q); hence if
γ ′†(Q) = γ ′(Q) then

LQ(γ) = δ(Q ·γ)/δu. (3)

If R : V → V,S : V → V∗,P : V∗ → V,N : V∗ → V∗ are weakly nonlocal or, even
more broadly, belong to Mats(A)[[D−1]], then we can [2, 5, 9] define their Lie derivatives
along Q ∈ V as follows: LQ(R) = R′[Q] − [Q′,R], LQ(N) = N′[Q] + [Q′†,N], LQ(P) =
P′[Q]−Q′ ◦P−P◦Q′†, LQ(S) = S′[Q] +Q′† ◦S+S◦Q′, where for H = ∑m

j=−∞ hjD
j

we set H′[Q] = ∑m
j=−∞ h′

j [Q]Dj . Here and below we do not assume R and S (resp. P and
N) to be necessarily defined on the whole of V (resp. on the whole of V∗).

An operator R : V → V is called hereditary [9] (or Nijenhuis [3]) on a linear subspace L
of the domain of definition of R if for all Q ∈ L

LR(Q)(R) = R ◦ LQ(R). (4)

In what follows, by saying that R is hereditary without specifying L we shall mean that R is
hereditary on its whole domain of definition, cf e.g. [9]. If R is hereditary on L, then for any
Q ∈ L such that Rk(Q) ∈ L for all k ∈ N we have [Ri (Q),Rj (Q)] = 0, i, j = 0, 1, 2, . . . ,

cf e.g. [2, 5]. We do not address here the issue of proper definition of Rj (Q) and refer the
reader to [29–31] and [32] and references therein for details.

Denote by S(R, Q) the linear span of Ri (Q), i = 0, 1, 2, . . . . We readily see from (4)
that LRi (Q)(R) = 0 for all i = 0, 1, 2, . . . if and only if LQ(R) = 0 and R is hereditary on
S(R, Q). Hence, if LRi (Q)(R) = 0 for all i = 0, 1, 2, . . . , then [Ri (Q),Rj (Q)] = 0 for all
i, j = 0, 1, 2, . . . .

2. The main result and its applications

Consider a weakly nonlocal operator R : V → V of the form

R =
r∑

i=0

aiD
i +

p∑
α=1

Gα ⊗ D−1 ◦ γα, (5)

where ai are s × s matrices with entries from A, Gα ∈ V,γα ∈ V∗ and r � 0.
We shall call R of the form (5) normal if for all α, β = 1, . . . , p we have γ ′

α = γ ′†
α , ζ ′

α =
ζ ′†

α , where ζα = R†(γα), and LGα
(γβ) = 0. This is a very common property: it appears

that all known-today weakly nonlocal hereditary recursion operators of integrable systems in
(1+1) dimensions are normal.

Proposition 1. Consider a normal R : V → V of the form (5), and let Q ∈ V and R be such
that R is hereditary on S(R, Q), LQ(R) = 0 and LQ(γα) = 0 for all α = 1, . . . , p.

Then Qj = Rj (Q) are local and commute for all j = 0, 1, 2, . . . .

Proof. The commutativity of Qj immediately follows from R being hereditary on S(R, Q),
see above. Now assume that Qj is local and LQj

(γα) = 0, and let us show that Qj+1 is local
and LQj+1(γα) = 0. First of all, by (3) we have δ(Qj ·γα)/δu = LQj

(γα) = 0, so by (1)
Qj ·γα ∈ Im D for all α = 1, . . . , p, and hence Qj+1 = R(Qj ) is local.

To proceed, we need the following lemma:

Lemma 1. Let R : V → V of the form (5) and Q ∈ V be such that LGα
(γβ) = 0, LQ(γα) = 0

and γ ′†
α (Q) = γ ′

α(Q) for all α, β = 1, . . . , p.
Then LR(Q)(γα) = δ(Q · R†(γα))/δu for all α = 1, . . . , p.
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Proof of the lemma. As γ ′†
α (Q) = γ ′

α(Q), by (3) we have δ(Q ·γα)/δu = LQ(γα) = 0, so
by (1) Q ·γα = D(fα) for some fα ∈ A. Likewise, Gβ ·γα = D(gαβ) for some gαβ ∈ A,
whence

R(Q) · γα = Q · R†(γα) + D


 r∑

i=1

i−1∑
j=0

(−D)j
(
aT

i γα

) · Di−j−1(Q) +
p∑

β=1

gαβfβ


 .

Using this formula along with (1) and (3) yields LR(Q)(γα) = δ(R(Q) ·γα)/δu =
δ(Q · R†(γα))/δu. The lemma is proved.

As R is hereditary on S(R, Q), repeatedly using (4) yields LQj
(R) = LRj (Q)(R) =

Rj ◦ LQ(R) = 0. Next, using lemma 1, the normality of R, the equality ζ ′
α = ζ ′†

α ,
where ζα = R†(γα), and (3), we obtain LQj+1(γα) = LR(Qj )(γα) = LQj

(R†(γα)) =
LQj

(R†)γα + R†LQj
(γα) = LQj

(R†)γα = (
LQj

(R)
)†

γα = 0. The induction on j starting
from j = 0 completes the proof. �

If Gα, α = 1, . . . , p, are linearly independent over the field T of locally analytic functions
of t (note that this can always be assumed without loss of generality), then the conditions
LQ(γα) = 0, α = 1, . . . , p, are equivalent to the requirement that R(Q) is local, and we
arrive at the result announced in the introduction.

Theorem 1. Let Gα, α = 1, . . . , p, be linearly independent over the field T of locally analytic
functions of t. Suppose that a normal weakly nonlocal R : V → V of the form (5) and Q ∈ V
are such that LQ(R) = 0,R is hereditary on S(R, Q), and R(Q) is local.

Then the quantities Qj = Rj (Q) are local for all j = 2, 3, . . . , and [Qj , Qk] = 0 for
all j, k = 0, 1, 2 . . . .

Proof. By virtue of proposition 1 it is enough to show that if R(Q) is local then LQ(γα) = 0
for all α = 1, . . . , p. To prove this, suppose that R(Q) is local but for some value(s) of α we
have LQ(γα) �= 0.

Then we have R(Q) = M +
∑p

α=1 Gαωα , where M is local, and ωα denotes the
nonlocal part of D−1(γα · Q) (some of ωα may be zeros). By assumption, R(Q) is local,
so

∑p

α=1 Gαωα = 0. Moreover, as Di(R(Q)), i = 1, 2, . . . , are local too, we arrive at the
following system of algebraic equations for ωα:

p∑
α=1

Dj(Gα)ωα = 0, j = 0, 1, 2, . . . .

This system has the same structure as (A.2), and using the linear independence of Gα over
T we conclude, in analogy with the proof of lemma 2 from the appendix, that ωα = 0 for
all α = 1, . . . , p. Hence γα · Q ∈ Im D and by (1) we have δ(γα · Q)/δu = 0. Finally, as
γ ′†

α = γ ′
α by assumption, (3) yields LQ(γα) = 0 for all α = 1, . . . , p, as required. �

The seed symmetry Q often commutes with Gα: LQ(Gα) ≡ [Q, Gα] = 0. Then we can
bypass the check of the conditions LQ(γα) = 0 in proposition 1 as follows.

Corollary 1. If Gα, α = 1, . . . , p, are linearly independent over the field T of locally analytic
functions of t, then for any R of the form (5) and any Q ∈ V such that LQ(R) = 0 and
LQ(Gα) = 0 for all α = 1, . . . , p we have LQ(γα) = 0, α = 1, . . . , p.

Proof. Indeed, (LQ(R))− = ∑p

α=1(Gα⊗D−1◦LQ(γα)+LQ(Gα)⊗D−1◦γα) = ∑p

α=1 Gα⊗
D−1◦LQ(γα). As LQ(R) = 0 implies (LQ(R))− = 0, we get

∑p

α=1 Gα⊗D−1◦LQ(γα) = 0,
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whence by linear independence of Gα over T and lemma 2 (see the appendix) we obtain
LQ(γα) = 0, as required. �

We also have the following ‘dual’ of proposition 1 for the elements of V∗.

Proposition 2. Consider a hereditary operator R : V → V of the form (5) and assume
that LGα

(R) = 0 for all α = 1, . . . , p. Let ζ ∈ V∗ be such that LGα
(ζ) = 0 for all

α = 1, . . . , p, ζ ′ = ζ ′† and (R†(ζ))′ = (R†(ζ))′†.
Then ζj = R†j (ζ) are local, i.e., ζj ∈ V∗, and satisfy ζ ′

j = ζ ′†
j for all j ∈ N.

Proof. Again, assume that ζj is local, LGα
(ζj ) = 0 and ζ ′

j = ζ ′†
j , and let us prove that ζj+1

is local as well, LGα
(ζj+1) = 0, and ζ ′

j+1 = ζ ′†
j+1.

As R is hereditary, the equalities ζ ′ = ζ ′† and (R†(ζ))′ = (R†(ζ))′† imply [5, 9]
that ζ ′

j = ζ ′†
j for all j = 0, 1, 2, . . . . We further have LGα

(ζj+1) = LGα
(R†ζj ) =

LGα
(R†)ζj + R†LGα

(ζj ) = LGα
(R†)ζj = (LGα

(R))†ζj = 0, as desired.
Finally, δ(ζj · Gα)/δu = LGα

(ζj ) = 0 implies, by virtue of (1), that Gα · ζj ∈ Im D,
and hence ζj+1 is indeed local. The induction on j completes the proof. �

Corollary 2. Let an operator R : V → V of the form (5) be hereditary and normal, and let
LGα

(R) = 0, α = 1, . . . , p.
Then ζα,j = R†j (γα) and Gα,j = Rj (Gα) are local, ζ ′

α,j = ζ ′†
α,j and [Gα,j , Gα,k] = 0

for all j, k = 0, 1, 2, . . . , and α = 1, . . . , p.

3. Hereditary operators and scaling

Given an S ∈ V , if LS(K) = κK for some constant κ , then K is said to be of weight κ (with
respect to the scaling S), and we write κ = wtS(K), cf e.g. [11].

Proposition 3. Let R : V → V and Q ∈ V be such that LQ(R) = 0. Suppose that R has the
form (5), r ≡ deg R > 0, LQ(γα) = 0 for all α = 1, . . . , p, q ≡ ord Q > max(ord ar − r, 1),
the matrix ∂Q/∂uq has s distinct eigenvalues, and det ∂Q/∂uq �= 0. Further assume that
there exist a nonzero constant ζ and an s-component vector function S0(u) such that for
S = xu1 + S0(u) we have LS(R) = rζR, LS(Q) = qζQ, and there exists an s × s matrix
	 with entries from A that simultaneously diagonalizes ∂Q/∂uq and ∂S0/∂u and satisfies
	′[S] − xD(	) = 0.

Then LRj (Q)(R) = 0 for all j = 1, 2 . . . , and hence R is hereditary on S(R, Q) and
[Ri (Q),Rj (Q)] = 0 for all i, j = 0, 1, 2, . . . .

Proof. Consider an algebra Ã of all locally analytic functions that depend on x, t , a finite
number of uj , and a finite number of nonlocal variables from the universal Abelian covering
over the system uτ = Q, see [32, 33] and references therein for more details on this
covering. Let L ≡ ∑m

i=−∞ biD
i , where bi are s × s matrices with entries from Ã, satisfy

L′[Q] − [Q′,L] = 0.
Assume first that s = 1. Then, as q > 1, equating to zero the coefficient at Dm+q−1

in L′[Q] − [Q′,L] = 0 yields q∂Q/∂uqD(bm) − mbmD(∂Q/∂uq) = 0, or equivalently
D(bm(∂Q/∂uq)

−m/q) = 0. In complete analogy with proposition 5 of [32], the kernel of D in
Ã is readily seen to be exhausted by the functions of t and τ . Hence bm = cm(t, τ )(∂Q/∂uq)

m/q

for some function cm(t, τ ).
For s > 1 a similar computation shows that there exists (cf e.g. [24, 26]) a diagonal s × s

matrix cm(t, τ ) such that bm = 	−1cm(t, τ )
m/q	, where 	 is a matrix bringing ∂Q/∂uq into
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the diagonal form, i.e., 	∂Q/∂uq	
−1 = diag(λ1, . . . , λs) ≡ 
, where λi are the eigenvalues

of ∂Q/∂uq , and 
m/q = diag
(
λ

m/q

1 , . . . , λ
m/q
s

)
.

It is straightforward to verify that Lj ≡ LRj (Q)(R), for j = 1, 2, . . . , satisfy LQ(Lj ) ≡
L′

j [Q] − [Q′,Lj ] = 0. Moreover, under the assumptions made R is a recursion operator for
the system uτ = Q, and, as LQ(γα) = 0 for all α = 1, . . . , p, by proposition 2 of [32] we
have Rj (Q) ∈ Ãs for all j ∈ N. Then, using the above formulae for the leading coefficients
of Lj and the condition 	′[S] − xD(	) = 0 along with the assumption that 	 diagonalizes
∂S0/∂u, we readily find that wtS(Lj ) = ζ deg Lj .

As q > 1, equating to zero the coefficient at Dr+q on the l.h.s. of LQ(R) = 0, we conclude
that the leading coefficient � ≡ ∂Q/∂uq of the formal series Q′ commutes with the leading
coefficient ar of R. Moreover, as q > ord ar − r , the same is true for the leading coefficient
a

j
r � of (Rj (Q))′ for all j = 1, 2, . . . . Therefore, the coefficient at Djr+q in Lj vanishes, and

deg(Lj ) < q + rj . On the other hand, it is immediate that LS(Lj ) = (rj + q)ζLj . This is in
contradiction with the formula wtS(Lj ) = ζ deg Lj unless Lj = 0, and the result follows. �

Remark. The above proof can be readily extended to include scalings S of more general
form and to handle the case when the coefficients of R involve nonlocal variables from the
universal Abelian covering over uτ = Q.

Theorem 1 together with propositions 1 and 3 yields the following assertion.

Corollary 3. Under the assumptions of proposition 3 suppose that R is normal, and at least
one of the following conditions is satisfied:

(i) LQ(γα) = 0, α = 1, . . . , p;
(ii) Gα, α = 1, . . . , p, are linearly independent over T and LQ(Gα) = 0, α = 1, . . . , p;

(iii) Gα, α = 1, . . . , p, are linearly independent over T and R(Q) is local.

Then Qj = Rj (Q) are local and commute for all j = 0, 1, 2, . . . .

4. Higher recursion, Hamiltonian and symplectic operators

Consider an operator R of the form (5) and another operator of similar form:

R̃ =
r̃∑

i=0

ãiD
i +

p̃∑
α=1

G̃α ⊗ D−1 ◦ γ̃α. (6)

For a moment we do not assume that R and R̃ act on V , so we do not specify whether the
quantities Gα,γα, G̃α, γ̃α belong to V or to V∗.

Using the lemma from section 2 of [21] we readily find that

(R ◦ R̃)− =
p̃∑

α=1

R(G̃α) ⊗ D−1 ◦ γ̃α +
p∑

α=1

Gα ⊗ D−1 ◦ R̃†(γα). (7)

Repeatedly using (7) yields the following formulae that hold for integer n,m � 1,

(Rn)− =
n−1∑
j=0

(n − 1)!

(n − 1 − j)!j !

(
p∑

α=1

Rj (Gα) ⊗ D−1 ◦ (R†)n−1−j (γα)

)
, (8)

((R†)n)− = −
n−1∑
j=0

(n − 1)!

(n − 1 − j)!j !

(
p∑

α=1

R†j (γα) ⊗ D−1 ◦ Rn−1−j (Gα)

)
, (9)
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(Rn ◦ R̃m)− =
n−1∑
j=0

(n − 1)!

(n − 1 − j)!j !

(
p∑

α=1

Rj (Gα) ⊗ D−1 ◦ R̃†m(R†)n−1−j (γα)

)

+
m−1∑
j=0

(m − 1)!

(m − 1 − j)!j !

(
p̃∑

α=1

RnR̃j (G̃α) ⊗ D−1 ◦ (R̃†)m−1−j (γ̃α)

)
. (10)

Corollary 2, combined with (7)–(10), immediately yields the following result.

Corollary 4. Suppose that R : V → V meets the requirements of corollary 2, and
P : V∗ → V,S : V → V∗,N : V → V,T : V∗ → V∗ are purely differential operators.

Then Rk,R†k,P ◦ R†k,S ◦ Rk,Nq ◦ Rk, and Tq ◦ R†k are weakly nonlocal for all
k, q = 0, 1, 2, . . . .

If B is a scalar differential operator of degree b, then [25] dimT(A
⋂

ker B) � b, and
using lemma 2 (see the appendix) we can readily prove the following assertion.

Corollary 5. Let s = 1. Assume that R and P (resp. S) meet the requirements of corollary 4,
deg P = b (resp. deg S = b), and R†j (γα) (resp. Rj (Gα)) are linearly independent over T

for all j = 0, . . . , n − 1 and α = 1, . . . , p.
Then there exist at most [b/p] local linear combinations of P ◦ R†k (resp. S ◦ Rk),

k = 1, . . . , n, and any such local linear combination involves only P ◦ R†k (resp. S ◦ Rk)
with k � [b/p].

If P is a Hamiltonian operator (resp. if S is a symplectic operator), the above results,
especially corollary 5, enable us to obtain an estimate for the number of local, i.e., purely
differential, Hamiltonian (resp. symplectic) operators among the linear combinations of
P ◦ R†k (resp. S ◦ Rk). Such estimates play an important role, e.g., in the construction of
Miura-type transformations [2].

Finally, using propositions 1 and 2 we can readily generalize corollary 4 to the case of
weakly nonlocal P,S,T,N as follows:

Theorem 2. Suppose that R : V → V of the form (5) meets the requirements of corollary 2,
and Kβ, Hβ ∈ V and ηβ, ζβ ∈ V∗ are such that LKβ

(R) = 0, LHβ
(R) = 0,η′

β =
η′†

β , ζ ′
β = ζ ′†

β , (R†(ηβ))′ = (R†(ηβ))′†, (R†(ζβ))′ = (R†(ζβ))′†, LKβ
(γα) = 0, LHβ

(γα) =
0, LGα

(ηβ) = 0 and LGα
(ζβ) = 0 for all α = 1, . . . , p and β = 1, . . . , m. Further assume

that P : V∗ → V,S : V → V∗,T : V∗ → V∗ and N : V → V are weakly nonlocal and we
have P− = ∑m

β=1 Kβ ⊗D−1 ◦Hβ,S− = ∑m
β=1 ζβ ⊗D−1 ◦ηβ,T− = ∑m

β=1 ζβ ⊗D−1 ◦Kβ

and N− = ∑m
β=1 Hβ ⊗ D−1 ◦ ηβ .

Then P ◦ R†k,T ◦ R†k,S ◦ Rk, and N ◦ Rk are weakly nonlocal for all k = 0, 1, 2, . . . .

Note that if P is a Hamiltonian operator and S is a symplectic operator, then they are
skew-symmetric (P† = −P and S† = −S), and we can set without loss of generality
Hβ = εβKβ and ζβ = ε̃βηβ , where εβ and ε̃β are constants taking one of three values, −1, 0
or +1, see e.g. [23]. The conditions of theorem 2 for ζβ and Hβ are then automatically satisfied.
Moreover, if R is a recursion operator, P is a Hamiltonian operator and S is a symplectic
operator for an integrable system in (1+1) dimensions, then theorem 2 proves, under some
natural assumptions that are satisfied for virtually all known examples, the Maltsev–Novikov
conjecture which states [10] that higher recursion operators Rk , higher Hamiltonian operators
P ◦ R†k and higher symplectic operators S ◦ Rk are weakly nonlocal for all k = 0, 1, 2, . . . .
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5. Examples

Consider a hereditary recursion operator (see, e.g., the discussion on page 122 of [28] and
references therein)

R = D2 + 2au2
1 + 4

3bu1 + c − 2
3 (3au1 + b)D−1 ◦ u2

for the generalized potential modified Korteweg–de Vries equation

ut = u3 + au3
1 + bu2

1 + cu1,

where a, b, c are arbitrary constants. This operator meets the requirements of theorem 1 for
Q = u1, so all Qj = Rj (Q), j = 1, 2, . . . , are local.

The equation in question has infinitely many Hamiltonian operators P = D and
Pj = P◦R†j , j ∈ N (in particular, we have P1 = D3 +

(
2au2

1 + 4
3bu1 + c

)
D − 2

3 (3au1 +b)u2

+ 2
3 (3au1 + b)D−1 ◦ u1). By corollary 4 all Pj , j = 1, 2, . . . , are weakly nonlocal, and by

corollary 5 P is the only local Hamiltonian operator among Rj ◦ P for j = 0, 1, 2 . . . .

For another example, consider a linear combination of the Harry Dym equation and the
time-independent parts of its scaling symmetries, cf e.g. [2, 18, 17]:

ut = u3u3 + axu1 + bu, (11)

where a and b are arbitrary constants, and a hereditary recursion operator for (11)

R = exp(−3(a + b)t)u3D3 ◦ u ◦ D−1 ◦ exp((a + b)t)/u2

= exp(−2(a + b)t)(u2D2 − uu1D + uu2) + exp(−3(a + b)t)u3u3D
−1 ◦ exp((a + b)t)/u2.

Again, the requirements of theorem 1 are met for Q = exp(−3(a + b)t)u3u3, so all
Qj = Rj (Q), j = 1, 2, . . . , are local.

Note that in both of these examples there is no scaling symmetry of the form used in [11],
and hence the locality of corresponding hierarchies cannot be established by direct application
of the results from [11].
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Appendix

Here we prove the following lemma kindly communicated to the author by V V Sokolov.

Lemma 2. Consider H = ∑m
α=1

�f α ⊗ D−1 ◦ �gα , where �f α, �gα ∈ Aq , and �f α are linearly
independent over the field T of locally analytic functions of t.

Then H = 0 if and only if �gα = 0 for all α = 1, . . . , m.
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Proof. Clearly, H = 0 if and only if H† = 0. Using (2) we find that

H† = −
∞∑

j=0

m∑
α=1

(−1)j �gα ⊗ Dj( �f α)D−1−j .

Equating to zero the coefficients at powers of D in H† = 0, we obtain the following system of
linear algebraic equations for �gα:

m∑
α=1

gk
αDj

(
f d

α

) = 0, d, k = 1, . . . , q; j = 0, 1, 2, . . . . (A.1)

We want to prove that the linear independence of �f α over T implies that gk
α = 0 for all α

and k. To this end let us first fix k and consider (A.1) as a system of linear equations for the
components gk

α of �gα .
Clearly, if the rank ρ of the matrix of this system equals m, then gk

α = 0, so we can prove
our claim by proving that if ρ < m, then �f α are linearly dependent over T. Indeed, if ρ < m,
then the columns of our matrix are linearly dependent over A. On the other hand, ρ of them
must be linearly independent over A. Assume without loss of generality that these are just the
first ρ columns. The rest can be expressed via them, that is, there exist hα

β ∈ A such that

Dj( �f β) =
ρ∑

α=1

hα
βDj ( �f α), β = ρ + 1, . . . , m, j = 0, 1, 2, . . . . (A.2)

As hα
β are independent of j , the consistency of the above equations and the linear independence

of first ρ columns over A imply that D
(
hα

β

) = 0, hence hα
β = hα

β(t), and (A.2) for j = 0

implies the linear dependence of �f α over T, which contradicts our initial assumptions. Thus,
if �f α, α = 1, . . . , m, are linearly independent over T, then the matrices in question are of rank
m for all k, and hence �gα = 0 for all α = 1, . . . , m. �
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